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OPERATORS ON ALMOST HERMITIAN MANIFOLDS

YOSUKE OGAWA

Introduction

Recently C. C. Hsiung [1] showed, among other results on the realization
of the complex Laplace-Beltrami operator [] on an almost Hermitian space,
that if for an almost Hermitian structure the relation [] = 4/2 holds for all
forms of degrees O and 1, then the structure is Kaehlerian, where 4 denotes
the real Laplace-Beltrami operator; this result was a conjecture for some time
and is an improvement of a theorem by Kodaira-Spencer [2]. In the present
paper, we point out that the two definitions of the operator [ given by Ko-
daira-Spencer and C. C. Hsiung respectively are different, and extend the
above result of Hsiung by showing that for an almost Hermitian structure if
] according to either definition is real on all forms of degrees 0 and 1, then
the structure is Kaehlerian'.

Let II be the projection mapping onto the subspace composed of elements

of type (r, s) (see § 1), and g the skew-derivation of dgree 1, which coincides
on functions with 1]% d and satisfies the relation ad + d3 = 0. Then the

definition of the integrable condition of the almost complex structure is given
by a* = 0, [2]. By investigating the real and imaginary parts of the operator
9, we express an equivalent condition of 3 = 0 in terms of some real operators,
and give a condition on a real operator for an almost Hermitian structure to
be Kaehlerian.

1. Definitions

Let M" be a Riemannian space, denote its fundamental metric tensor by g,,,
and put g = det|g,,|. (In the following the Greek indices 4, u, v, - - - run from
1 to n, the dimension of the space.) Let {1277 be the generalized Kronecker’s
delta, «¢,,...,, stand for &;:% , and %7 be the algebra of differential p-forms
on M". Then the exterior differentiation d: #? — %?*' and the adjoint

Received November 8, 1968.

1 After this paper was written, Hsiung informed me that at the Summer Institute on
Relativity and Differential Geometry sponsored by the American Mathematical Society
and the National Science Foundation at the University of California at Santa Barbara in
1962 he had raised the question: If [ for an almost Hermitian structure is real, is the
structure Kaehlerian?
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operator x: F? — " # can be written for a p-form u = (u,...,,) by
(1.1) (AW)sy..ap, = (1/PDESEETREV My

(1.2) (*u)ll'-'in—lﬁ = (l/p!)*/zgp“‘x e gppypuh""’pef‘l“"‘ph""n—p ’

where P, denotes the covariant derivation with respect to the Riemann
connection. The exterior co-differentiation §: #? — #?-! defined by

(13) 5 — (___1)11P+n+1*d*
can be expressed locally as

(1.4) (U)o, = —P?U

pigeselp *

Let 4 be the Laplace-Beltrami operator defined by
4d=ds + édd,

then by means of (1.1) and (1.3) it is easy to verify that for a form u of
degree p

il i i 5
(1-5) (Au)h...gp = _'VPVpuhn.}“ + Z] Rlipuly--;n-}p + ;le.‘-;ijuh...A...E...'
i= i< f

I3 ip
holds, where R,,,, (or R,,) is the curvature (or Ricci) tensor of the Riemann
connection, uh,,,f,.,, :p Indicates that the subscript p replaces the subscript 2;,
and u,,...5...; » indicates that the subscript 2, is deleted.

If a Riemannian space M™ admits an almost complex structure ¢, satisfying

(1.6) gpagolpgopa = gl,u ’

then it is called an almost Hermitian space. Let T°(M) be a complexification
of the tangent space of M™*, and denote by #,? the (complexified) differential
p-forms, that is, the complex-valued functions defined on T°(M) A - ..
AN T4(M). For non-negative integers r,s we define the projection mapping
Il: #,» — #. where p = r + s as follows. At first

T,

(17) 171” = (1/2)(51’J - ﬂ/_~1 S-Dx‘u) 3
1,0
and its conjugate

(1.8) n;:%uqumw+¢4Wﬁ,

0.1

which will be abbreviated to I7 and [ respectively. Then for a p-form u of
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F.?, we define

(T Wy = 1/ 110250 PU,
a9 - s )
= (L) (rtsegreerogall oo IL, r {100 o2 I, 25 Uy,

srByypeesng ®
A p-form u of # P is called of type (r, s) if it satisfies 1] u=u.

Lemma 1.1. In an almost complex space, for any 9et of functions u,,..
we have

1ip

(1.10) i( H u)ll"'lp - ull...jp .

Proof. We prove by induction. Suppose that (1.10) is true for all sets of
functions u,,...,, for r < p; for convenience those functions are said to be of
degree r < p. Now let u = (lho...zp) be a set of functions of degree p + 1.
Then we have

1/ + DY Z I 0o s,

=0 p+1-k,k
= (1/(p + 1)!) k;o p+1ck5;’;--.ﬂp+.l.—.k 01-..},;]]“#1. . ,]]pp.' l_/c;zp-u—k

_— .
: 1]01 e ]‘ldk u”l"'”p+1—k"1"'vk

= (1/(p + DDIEEpILe -« I, Py, + 0 - 1T, 70

roeeevp
» _
~ Piesep _ cveq e # I3 -
+ 2 (GChupCroeiyforaceon bl Moo JI Tt o]
k=1
Al

yku‘ﬂl-..

ag "‘p~‘«1~kl’1“‘vk] 5

where ,,,C, denotes the number of combinations of p + 1 different things
taken p at a time. Considering the assumption of the induction, we get

1Y #
510 p]] FU Cee ]]pp quD_“#p

PoevsPy— # By kJT ¢ ¥
+ ;;‘1 GCk e PR ;zﬂpo o ... H,,p_k pokff r ]luk»kuﬂo,,.,,p_k",,_vk

p

=2 (=DplIl fu, i, -

a=0

In a similar way, we have

op voseeyp

geieell, - 0,70

r - 7 3
p—kJ] v .., J] ¥
Bp—k I o Wueeirppugeeong

p-1
Proeebp—gogrerar JT K
+ kZ—:tl ka gpr P koo ;;le v 1

p .
=2 (=Dptl, gy, -

a=0
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Hence we have

p+1 i —
2ot Pty = Z}O (=DeplUL? + 1,y 5,
fom

k=0 p+1-k,k

=@+ D0y,
which shows that (1.10) is true for any set of functions u,,...,, of degree p + 1.
From the proof of the above lemma, we see that in an almost complex space

P — _
Pres-p I3 H e .. H — nPyeeocu
(1.11) kz_;o PCuei 2 M I S, 5 e T P Uy, T IR Uy

holds for any p-form Uppoupy LS P < 00
Now we define the operators d,: #F.? — F.2*' of type (1,0) and d,: &#,*
— F P oof type (2, —1) in accordance with [2] by

(1.12) d =Y HdI,
r+s=p r+ls 7.8
(1.13) d,= > I dIl.

r+s=p r+%,s-1 r;¢

We denote the conjugate operator of d, (or d,) by d, (or d,).
Lemma 1.2. In an almost complex space, on % .» we have

(1.14) I dil=0,

r+38,5§-2 7,8

where r + 5 = p.
Proof. For any p-form u, we have

(1 dlluw,..,

r+3,8-1 7,8

— gf1erPrigoneriog-s o, ., ., Eras] n1, .. J] vy =2af@l ®p
= egrerregees ], 1, 'l I, .,

-V:(Ef,i"":%."i":énpi”; oo Hp;_ﬁ;”,;" R H,;"‘su,.;...p;.,;...y;) .
On the right hand side, there appear such terms of the types as

= gt . . e

(a) [Ihm Ce []“n P 5",,’;5::;'71:;“:'_”5:;]]‘);#1 o I7 ,Fr”d;vl
r 2

s ISV Mg

7 leeeBiol ovv ol # [ = A
(b) 1/ PRI ) BRI S it 4 | PSRRI | Piias I e

M H,_’,véuﬂi...p;,;...,,_; .
, —
(C) leﬂl e e [1.,1141 s e;.‘;é:np;u{ Iy aé[]pil‘l .. HP;#;'VrH“iui

rHpagyiretvg—g
T PSU, e e
of Hplmpteeny

Thus in (a), at least one of terms of the index pairs (g, - - -, ;) must coincides
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with that of (g,, - - -, #,,4), and from the fact that
npay =0,

we can conclude that all terms in (a) are zero. For the same reason all terms
in (b) and (c) are also zero. Hence the lemma is proved.
Taking account of Lemmas 1.1 and 1.2., we see that

(1.15) d=d, +d, +d, +d,

holds [2].
Next the definitions of complex analogues of the real operators 4 and § in
the sense of Kodaira-Spencer {2] are as follows:

(1.16) 6=2d4,+d —d,,

(1.17) D = —x0% .

On the other hand, C. C. Hsiung defined them by the following operators
(1.18) (Wi, = (1/pY) 3 M 005" IF Uy

T+s=p r+1,8

(1.19) By, = — 5 ISP Vo,

T+S$=p 71,8
for a p-form u = (u,,..,,,). Later we shall show that the relation
(1.20) D = —*d%

is valid.

In order to make clear the real and imaginary parts of the operators 3 and
@ and the others, we define the following more operators in an almost
Hermitian space M" for a p-form u = (u,,... jp):

i -
(1.21) Tty = B (10,7 iy (p>0,
(1.22) (mmﬂzéu0%mﬂwhﬁ@ (p>1)

from &P to #?+';

(1.23) (D), = @V s, p>D,
D
(1.24) Ay, = Z_]z (= DT 1ty iaeneiy (p>2)

from %? to #?! with
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f=Df=39f=0, fesF,
Ju =0, ue F'

for forms of lower degrees; finally

b «
(1.25) (@u)h---lp = ZI 02, WayBuniy =0,
(1.26) (w.u);l..-w =@, ‘Pxpppup,---pp =1

from #P to F°.

2. Lemmas

We study the properties of the operators defined in § 1.
Lemma 2.1. In an almost Hermitian space, the operator I' is a skew-

derivation and satisfies
2.1) '« = —D .

Proof. The same calculation as in the proof of Lemma 2.2 in [4] shows
that I" is a skew-derivation, and that, for any p-form u = (uh..,lp),

(*F*u)lz...;p == (—l)np+"+l(Du))5,..)p

holds, where n is the dimension of the space. Since n is even, we have (2.1)
immediately.

Lemma 2.2. [In an almost Hermitian space, the operator ¢ is a derivation
and satisfies, for any p-form u,,
2.2) *Qxu, = (—1)*Qu, ,
2.3) d¢ — @d = —1I' + 7.

Proof. By a directive calculation with respect to an orthonormal local
coordinate system for any p-form u = (u,,...;,) we have

(+@xu1);,...., = (1/(n — p)ipl)g g ... ghn=vfn-nghhs ... gr'oy, .
P i
- Z:l ﬂﬁpiaErl...rpﬂl...;...yn_p5p'1...p"_1,11...1p
: p .
= (=D /(pln — PID] 2 efdiih ™

pin-p) ' 2 Yyoeer ¥p ?
- ((_l) /p) .):1'1 511...5...11,‘011' u"l"'"p
i=

= (= 1)P (DU, .y
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Since n is even, we have (—1)?™~? = (—-1)#, and thus (2.2) is proved.
As for (3.3), we get

i i i i 4
(d¢u)lo'-'ip = Vlosulipu}l...;...}p - Vlisﬁlopu;l...f»...;p - Z in%jpuzl---i‘o--.?---zp
iE7
i i i 4
+ SDIiPVlouzl...?...;p - SD;OPVlilh,.,.;...;p - ;} SDZjPVliull‘--le"-?-“lp ’
i£7
(@du) = o,V u — Vo, + o u
10...11, -_ Solo rd llu.lp Solj r 11...10...11, Sﬂli iy 11.../:‘..11,
i i
- Soiopyliull-nf’---xp - Z SDIjPVliuzo...ﬁ...ﬁ,...;p .
1]
Hence it follows that
i
(d¢u —_ Qdu)xo...lp = (Vlogoli” o Vligolop)uil"';’\"'ip_— Z (‘ 1) SoluPVPuln"';"'ip
o
. J
+ igj (—l)l(inSijp - V‘«j%i")u;‘,;,...{,..p‘...;p
= Eﬁ(_’l)a(VI,SDlﬁp - Vzﬁﬂozap)u;o...;...‘;,...1A, - (—l)”gola"Vpulo,,,;,.,lp
U~ a
— (Tu - Pu)lo...lp .
Next considering the following relation
LA é#u Ky PE e ;# sj
Z Elll pip+1 ’3512% Fi + Z Ea,l pEp L "Aﬂlg%"
5=1 F=p+l
_ p+q§0 Pef‘l b Eptq
a1 a 11'"£"'1PHI ’
we have
@/ V)yyoyg + @A DO,
2 i
_ Hoeerlt 1
= (/@A & iz tontn by vy
B s i
1 0 A
+ J"=Zp:+1 Eueagyg Py gy Vo oyieiboipyg
Drg P1 osre Hpag
= 19! —
= (1/(Pq)) aZ=:1 %“Pexl...g-.-zp_;qu/‘""””v""*""#p"f = Qu N ’U)h...;p+q .

Thus the operator @ is a derivation.

Corollary 2.3. In an almost Hermitian space, the operator y is a skew-
derivation.

Proof. Since @ is a derivation, @d — d@ is a skew-derivation. By virtue of
Lemma 2.1 and equation (2.3), 7 is a skew-derivation.
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Corollary 2.4. In an almost Hermitian space, the relation

(2.4) dI' + I'd = dy + yd

holds.
Proof. (2.3) implies

—d@d = d~T + ), ddd=(—1+ pd,

from which follows (2.4) immediately.
Lemma 2.5. In an almost Hermitian space, we have

2.5) : sk = —3 — i(dp)

where i(5¢) denotes the inner product with respect to a 1-form dp (p = ¢,,).
Proof. From the definition of y, we have, for a p-form u,

3
(Tu)lo“‘ip = ,gp(— ])aAAajﬁﬂuju...a...ﬁ...Jp 3
where we put 4, = F,0," — V,¢,°. Therefore we have

(*T*u)xg---xp
Sl =t DIPD] B (D g g aetpes

1<iv j€n—~p+1

N Rl S i - A z
g g u”l"‘ypEal'"ﬂp"l"":"'”"""n-—p+1""1""0u~p+112"'1p

(_l)ip lan -pte 085 By ees vyt
p
A ! J,E@...jppipjuu]...v

(n—p+ Dn—- pp!

p
P

= —V’go”,up;,...xp - Z“ (_ l)angoﬂxaup,jz...ﬁ...;p

= (B — Sy, -

Theorem 2.6. In an almost Hermitian space, we have the following

relations:
2.6) d=d—~—11)/2,
2.7 E=0-vV—-1D)/2.

Proof. Using

Oely =1y, Heflr=0, Oedy =0, Leidy =11¢,

we have
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(au)x.,mzp
= [/ + DUsOIttpe st 1,0 - I, ril,5 - - I,

s

PSS “ne w a
€otyeretye oot 7V Mo, 0,

FUPY RN T 7
= (1/(rts et rmesll, o oo [, oL e TL T g

s

I

r — . -
21 A/ rsevtplly - o I, eI, 7 s U I
=

Il

0 p?

P -
(I/P!):L,:O GCullp - o 1P, Pevs - I, et I

which is reduced to, in consequence of (1.11),
(012 = (1/P DT RUT T i, )
= (1/2)(1 /P52, — v — L 20,7 Vg, »
giving (2.6). As for (2.7), from the definition we have
(Dw)y,...s,
= - 2 1 oy sl - I L LS Uy,

ris=p rls! ?

1 s 7 - =
= — Z e '52 #r¥a ”sl—z;]]'!‘lf'l cen ]]F‘rfvr[jyl“x N []ys_l"s—lnfp
rts=p r'(s—l)

T
Vitopy..cop0ye0y s

1 &5 (p-D!

- 'E;’“.'-lfpl_;]],ulv‘ Ce 11”,!’7—

- S —r—-nr "

N/ PR TI / PR/

Hria
which becomes, due to (1.11),

DWWy = (—1/(p — V) Defz 22UVt )
= IV, = (—=1/DF* + ¥ — 10V,

giving (2.7).
Corollary 2.6. In an almost Hermitian space, we have

(2.8) D = —%Fx .

Proof. Since the dimension n of the space is even, from (1.3) we have
6 = —xdx for any p-form. Hence (2.8) is an immediate consequence of
Theorem 2.6 and Lemma 2.1.

Corollary 2.7. In an almost Hermitian space, we have

(2.9) d=d+~v-10)2,
(2.10) D=@++v—1D)2.
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Next we study the complex operators 8 and ®. Since 8 is a skew-derivation,
we first show how ¢ is expressed on #° and #'. Let f be a O-form. Then we
have

@, = II’YOAPVJ = (1/2)df — v—=1Tf = (8.,
and therefore
(2.11) f =o0f =df —v—=1If)/2.
Let u be a 1-form. Then we shall show that the relation
(2.12) ou = (1/2)(du — v =1 (' — p)u)
is satisfied. For this purpose, we need the following formulas:
21]0w =1/Hw —Tw — v —10w),
(2.13) {,Ilw =1/2)w + Tw),
olzw ={1/w —Tw + v —10w),
where w is any 2-form. By decomposing the 1-form u as u = u;, + u,, where
u, (resp. u,) denotes the part of type (1, 0) (resp. type (0, 1)), we have
du, = 2I{du1 = (1/4)(du, — Tdu, — v —1(ddw,)) ,
du, = () ,
du, = 0]]Zdu1 = (1/4)(du, — ¥Tdu, + v —1(ddu)) ,
du, = {zduz = (1/2)(du, + ¥(duy)) ,
dyu, = gdug = (1/M(du, — Tdu, — ' —1(Pduy)) ,
du, = 0 .
and therefore, by virtue of (1.16),

ou, = —v/ —1(@du) /2 ,
ou, = du, — v —1(dduy)/2 ,
which imply
ou = dgllu — v —1(®du)/2
= (1/2)du + ¥ =T (@dPu — ddu)) .
Making use of (2.3), we hence arrive at (2.12).
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Now we consider an operator
?=0/d~V=1T —7)

from &7 to #.P*'. Since yf vanishes for any O-form £, (2.11) and (2.12) show
that 9 and 9’ coincide on any form of degrees 0 and 1. Owing to Lemma 2.1
and Corollary 2.3, the operator @’ is a skew-derivation. Therefore § coincides
with ¢’ on all forms of any degree. By applying the adjoint operator * and
using Lemmas 2.1 and 2.5, we obtain

—40% = (1/2)(6 — v—1(D — 9 — i(3p))) .

Since 9 is defined by — *d*, we have proved
Theorem 2.8. In an almost Hermitian space, we have

(2.14) d=01/d—-~-1U -7),

(2.15) D=1/2)F — V=1 — 9 — i@3p)) .

Remark. As is easily seen, 3 and @ coincide if and only if the operator y
vanishes. This condition is equivalent to

(2;16) V1¢pu = Vpgalv .

As the tensor F,p,, is skew-symmetric in the indices g, v, from (2.16) we can
easily see that V,p,, vanishes, and therefore that the structure is Kaehlerian.
Hence the operator a coincides with @ if and only if the structure is Kaehlerian.

3. Theorems

In [2], the integrability condition of the almost complex structure is defined
by 6% = 0. Since, from Theorem 2.8,

= Q0/4—T -+ —1@l+ I'd—dy — yd)),
of which the imaginary part vanishes because of Corollary 2.4, we obtain
=1/ -7y,

which is a real operator. Hence we reach
Theorem 3.1. In:an almost Hermitian space, in order that the structure be
integrable it is necessary and sufficient that

(r—pr=0.

We shall use the operator I" to characterize a Kaehlerian structure by show-
ing that an almost Hermitian structure is Kaehlerian if and only if the operator
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I'? vanishes. As I lS a skew-derivation, I® is a derivation.  Therefore if [™
vanishes for all forms of degrees 0 and 1, then it vanishes for all forms of any
degree. If we take a O-form f and a 1-form # = (u,), then we have

(sz)lp = (SDIprSD/AU - SD/AprSDIc)Vaf ’
(qu)lyu :1@ (sDIFVpsop” - so.upVﬂsolu)Vauv +1@ (solpsopadevr)ur ’
a4

[Y 21

where @ indicates that the terms are summed cyclicly with respect to 2, g, v.
Y, 4y P

Thus the condition [™ = 0 is equivalent to the relations
(3.1) Voo, — 9V = 0,
(3.2) 1(:5 00, R, =0.

2l

Theorem 3.2. [n a Kaehlerian space, the operator I always vanishes.
Proof. Since the complex structure ¢ is a covariant constant in a
Kaehlerian space, (3.1) follows obviously. Moreover we have (see, for instance,

{1, (4.13)D
%FRFWM = %tpRPivm ’

and therefore

@

soll'solu”deum = Rl/ua ’

which easily gives (3.2).

In order to show the validity of the converse of Theorem 3.2 we need the
following lemmas. The almost Hermitian structure is said to be almost semi-
Kaehlerian if the fundamental 2-form is co-closed, that is, if the relation
P*e,, = 0 holds. '

Lemma 3.3. If I? = 0 in an almost Hermitian space, then the structure
is almost semi-Kaehlerian.

Proof. Transvecting (3.1) with ¢, we have

Voo + olof V.08 =0.

Contracting = and ¢ and noting ¢*V ,¢,, = 0, we thus prove our lemma.
Lemma 3.4. If [ = O in an almost Hermitian space, then we have

(3.3) & gol"vaF'” =0,

Ay i v
(3.4 (1/2)¢*R,,* + ¢/R* =0,
(3.5) v v 'R, + ¢/R,; =0.
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Proof. From (3.2), we get
(3‘6) ¢1p¢ﬂa¢erpnrm == ¢2PRvppw - so,upRyplw -

Taking the sum of the terms of (3.6) cyclicly with respect to the indices 2, #, v,
we have

0 :1@ ‘PAP‘P;-"SD»'RWM :;@ (p/'-ﬂRyw»w >
2 1Y

By
giving (3.3). Contraction of 2 and w in (3.3) yields
3.7 ©”R,,,.. + v/R,, —¢/R,, =0.
On the other hand, from (3.6) we get
—‘Pvp‘Pla‘Pﬂerfw = ‘Plpr#m - (Pvale - ‘Pﬂﬁvapw ’

which can easily be reduced to (3.4) by contracting with g*. Finally, the
relation (3.5) follows readily from (3.7) and (3.4).
Lemma 3.5. If I"* = 0 in an almost Hermitian space, then

(3.8) Vil = 0.

Proof. Since the structure is co-closed by Lemma 3.3, differentiating (3.1)
by I,, we have

(pl”Vle(pF" = Vj‘PﬂpVﬂ‘Pld + ‘P#p(Rlpsz‘Pw + Ripev‘P“) ‘
Owing to (3.4) and (3.5) the left hand side becomes

(1/2)‘/710(‘71‘79‘/7#” - Vle‘P#a) = (—1/2)901/)12@/13()‘9: + (1/2)§0)”R1N”(p;
=—R,+R,=0.
In the same way, the second and third terms on the right hand side are reduced
to —R°, and R,°, respectively and thus we have (3.8).
Theorem 3.6. In an almost Hermitian space, if the operator I'? vanishes

everywhere, then the space is Kaehlerian.
Proof. At first we show that

(3-9) o7V 0, = 0.
In fact, by virtue of (3.1) we have

Vl‘P,ua = (Pﬂp‘prVp‘PA: ’
which and (3.8), (3.5) imply
VZVl‘P#a = (pﬂle‘PfPFp‘P; :
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contracting with ¢*, and applying L.emma 3.5 we hence obtain (3.9).
From (3.9) follows immediately

Pl 0 = (127 (0,) ~ 0" VWp,, = 0,
which means F,¢,, = 0, showing the structure to be Kachlerian.
Now we define the complex Laplace-Beltrami operators [] and O by
0 =293+ 39,
O0=9+dD.
Then using Theorems 2.6 and 2.8, we can calculate the real and imaginary
parts of the operators [ and LO. First, for the operator [0 we have
Theorem 3.8. If the operator O in an almost Hermitian space is real on

all forms of degrees O and 1, then the space is Kaehlerian (cf. [1]).
Proof. From Theorem 2.6 and Corollary 2.7 it follows that

A0 =4+ Dr +TI'D) + =16 + IT'é — db — Dd) .
Therefore by the assumption we have, on #° and #*,
(3.10) o + I's —dD — Dd = 0,

which implies, for a O-form f, 6I°'f — Ddf = 6I'f = 0, since éf = Df = 0.
Thus Ve, V,f =0 for all O-form f, due to V V,f="VF,,f. By choosing
orthogonal geodesic local coordinates x', --.,x" at a point P and putting
f = x°, we can easily see that F*¢,” = O at every point P, which means that
the space is almost semi-Kaehlerian. Application of (3.10) to a 1-form u = ()
then gives ’ ’

—Vep, Vu, + Poof + VW u, + G¢o”R, . + ¢fRu, =0,
where the first term is zero. Now to the above equation we first apply u =
didx* for a fixed A, for which (F,u,), = 0, and then apply u = x°dx* for any
fixed distinct p and g, for which (F,u), = §29%.

3.11) . Vi + Vo =0,
(3.12) (1/2)¢*R,,,, + ¢:°R,, =0 .
(3.11) shows that the space is almost Tachibana. From Kotd’s theorem (see
K. Yano [5, p. 180, Theorem 2.5]) if (3.12) is satisfied in an almost Tachibana
space, then the space is Kaehlerian. Thus Theorem 3.8 is proved.

Next we consider the operator []. From Theorem 2.8, we have

A0 =4+ T — D — 9 — i) + D — 9 — i@eNI" — 1)
(3.13) — VZIID — 9 — iG)d + dD — 9 — i(6¢))
-6 —7) — T —pal.
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Theorem 3.9. If the complex Laplace-Beltrami operaior [ for an almost
ermitian structure is real on all forms of degree 0, then the structure is
most semi-Kaehler.

Proof. For any O-form f, since 6f = Df = 0 and 9f = yf = 0, by our
isumption from (3.13) follows immediately

(D — 9 — idp))df — 6I'f =0,
hich further reduces to, because of Ddf = 0 and 3df = 0,
iGp)df — oI'f =0,

aplying that V°¢,°V,f = O for any O-form f. Thus F*¢,” = 0, and the theorem
proved.

Theorem 3.10. If the operator [ for an almost Hermitian structure is real
1 all forms of degrees O and 1, then the structure is Kaehlerian.

Proof. By definition, for a 1-form u we have 9u = 0, and

Sdw), =Veer W u, — VeV u, ,
(6rw), = V"V, u, — V¥ pu, + Vi, Vou, — V,0Vu, .

s the structure is almost semi-Kaehlerian due to Theorem 3.9, from the
roof of Theorem 3.8 we obtain

2000 — VoW u, + (—V°V 07 — 0,R,7 + Rrp,u, =0,
hich implies
Ve + Ve =0, Vev of + /R, — Rrfp,” =0,

y an argument similar to that in the proof of Theorem 3.9. Contracting with
'_in the last equation gives (3.9) and therefore //,p,, = 0 in the same way as
t the proof of Theorem 3.6. Hence Theorem 3.10 is proved.
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